The Operating System Handbook

or, Fake Your Way Through Minis and Mainframes

by Bob DuCharme

UNIX



Table of Contents

Chapter 2 UNIX: AN INEFOQUCTION. ......co.viieieriesie st

P2 I 1 (o YOS TP 1
P20 0t I = Y TR U PP PRURI 4
2 L2 USENET ...ttt b e bbbt se e e nnennenne s 5
Chapter 3 Getting Started With UNIX........ccooiiiiieeeee e
TN S = 11 o 1 U TSP 7
3. LI FNIShING YOUr UNIX SESSION......ccuiiiiiuiriiiieieiesiesiesie st enes 8
L2 FIIBNEIMES......coeieeti et bbbt e e e n e n e nr e nenne s 8
B2 L WIHOCAITS. ...ttt bbbt e e n b e snenne s 9
2. 1.1 THE ASEEITSK .ttt 9
3.2.1.2 The QUESHION IMAIK.......cooiiieiieeee et 9
3.3 HOW FileS Are OrganiZed..........cceeeeieiierierienieseeieeee e 9
3.3.1 RAEiVE PEINNGMES........oiuiiiiieeieieie ettt 11
3.3.2 MOVING DEIWEEN DIFECLOIIES.........ccvieiierieeieeieeeeee ettt sne i 12
3.4 Available ON-liNE HEIP. ... s 13
Chapter 4 Using FIHES TN UNIX ..o
4.1 The Eight Most Important COmMMEaNGS............coereririeieiererese e 15
4.1.1 Command OpPtioNS. SWITCHES........ccueieiieieriserierie e 15
4.1.2 COMMON EFTOr MESSAgES.......cccueeieiieeiieeie ettt sn e 16
4.1.3 LiStiNg FIIENAIMES.........c.oiiiiiiieieeeeee et 17
4.1.3.1 Listing More than FIl@ NaMES...........ccooiiiieiiee e 19
4.1.4 Displaying a Text FIle'S CONLENLS.........coovemeiierierereriesieeiese e 24
4.1.4.1 Looking at Text FilesOne Screen at 8 TIME..........oocevirireneniereeeesee e 24
4.1.5 COPYING FIIES.....coeeeeeeeeee e e 26
4.1.6 RENAMING FIIES.....ceiiiieeeeee e 28
A.1.7 DEIEING FIES.....c.eieeeeeeee e b 29
4.1.8 Controlling ACCESS O AFIl€.......cooiiiceeeee s 31
4.1.9 Creating DIFECIOMES.......ccueieeeeeeierees ettt sn e e sn e e 32
4.1.10 REMOVING DIFECIOMES.......coueiueeiieiesiesie sttt s 33
Chapter 5 The UNIX Vi TEXE EQITOr.......ccooiiiiieeceeeee e
5.1 ENEEITNG Vit bbbt e e et s b e nr e n e e s 35
5.2 INSEITING TEXL....etiiteieeieieii ettt ettt r e n bbbt s enes 37
5.3 DEEIING TEXL...cueeueeieieieriesie ettt b e bt e e e sn b e ens 37
5.4 Typing OVEr EXISHNG TEXL.....cciieiieieieriesie s 37
5.5 SarChiNG FOr TEXE.....c.eoiiiieiitee e e 38
5.6 SAVING YOUI CRANGES......cuiiuiriiriieiieieie ettt e e nn e nenre e 38
5.7 QUITLING Vit e bbb bt bt e e e et e b e nnennesnenneas 39
5.8 Other Vi COMMENGS..........coiiiiiiieriesie sttt b e enes 40
Chapter 6 USiNg @ UNIX SYStEM......c.oiiiiiiierieeeeee e
6.1 Printing TEXE FIIES......coueiieeeeee et 42
6.1.1 Checking the Print QUEUE............ccueiiiiiriierieeieee et 42

6.1.2 Canceling Y our Print JOD.........ccoiiiiiriieeeeeee e 42



0.2 COMMABNT FIIES.....oeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e e e et et e e e e e e e e e e e e e e e e e e e e e e e e eeaeeaaaeees 43

6.2.1 The Automatic Login Command File............coooiiiiiiinneeeeee e 44
6.3 Communicating With Other USEIS..........ooiiiiiieeeeeese e 45
6.3. 1 RECAIVING MaIL......oiiiiiiiiieee e e 45

6.4 A SAMPIE UNIX SESSION......ciuiiiiiiiieieie ettt sne e 47



This Section, the Rest of the Book

This is one part of the book "Operating Systems Handbook (or, Fake Your Way Through Minis
and Mainframes)," which was originally published by McGraw-Hill as a $49.60 hardcover. Once
they reverted the rights to me after it went out of print, | converted the original XyWrite files to
DocBook XML and then used Norm Walsh's stylesheets (see www.nwalsh.com) and the Apache
FOP program (see xml.apache.org) to convert that to Acrobat files. The six parts of the book are
all available at http://www.snee.com/bob/opsys.html:

Part 1: Introduction. Note that this part includes a new section explaining why | didn't up-
date the book. | strongly suggest that, no matter how much or how little of the book you can
use, you glance through the whole Introduction as well. The "Comments and Suggestions"
part is now obsolete; my home page is now http:/www.snee.com/bob and my e-mail address
is bob@snee.com.

Part 2: UNIX. Everything described here should apply to Linux and its relatives.

Part 3: OpenVMS. Basically, VMS. DEC was calling it "OpenVMS" at the time.

Part 4: OS/400. The operating system for IBM's AS/400.

Part 5: VM/CMS. An IBM mainframe operating system.

Part 6: MV S. Another IBM mainframe operating system.

See www.snee.com/bob for information on books I've written since. In reverse chronological or-
der, they are:

XSLT Quickly is atutorial and users guide to XSLT designed to get you writing stylesheets
as quickly as possible.

XML: The Annotated Specification is a copy of the official W3C XML specification with
examples, terminology, and explanations of any SGML and computer science concepts nec-
essary for a complete understanding of the XML spec.

SGML CD isausers guide to free SGML software, most of which can be used with XML as
well. The chapter on Emacs and PSGML, which requires no previous knowledge of Emacs,
is available on the web site in English, Russian, and Polish.

One more thing: either |1 couldn't figure out the XSL keep-t oget her property or version
0.18.1 of FOP doesn't implement it yet. Either way | apologize that some screen shots get split
across page breaks.

The Operating Systems Handbook 4 copyright 2001 Bob DuCharme



Entire book copyright 2001 Bob DuCharme al rights reserved

The Operating Systems Handbook 5 copyright 2001 Bob DuCharme



Chapter 2 UNIX: An Introduction

Chapter 2 UNIX: An Introduction

UNIX has been around for over twenty years and many consider it to be the operating system of
the future. Why? Because as personal computers become cheaper and more powerful, the origi-
nal operating systems designed for them are less and less adequate; the portability and multi-
tasking ability of UNIX make it a strong candidate for those who want to upgrade from single-
user systems. From PC/DOS 2.0 to the Macintosh's System 7, other operating systems have in-
creasingly reflected the UNIX influence as their manufacturers strive to increase their power and
capabilities.

UNIX aso has a certain mystique, making it a magnet for would-be hackers. Clifford Stoll's
bestselling 1988 book "The Cuckoo's Egg" boosted this mystique with the story of a crunchy-gra-
nola Berkeley astronomer who tracks down some German spies employed by the KGB. What
made this story different from a John LeCarre novel, besides the fact that it was true, was that the
bad guys spying and the good guy's detective work were al done over a worldwide UNIX net-
work. (You don't need to know any UNIX to enjoy the book, but a basic knowledge—the kind
provided by this book—definitely enhances your appreciation of the key characters maneuver-

ings.)

2.1 History

The mystique of UNIX, however, is much older than Stoll's book. To understand its roots, we
must go all the way back to the twenties. Before the invention of computers, IBM realized that
people would pay good money for solid, reliable support after they bought IBM's time clocks
and tabulating machines. They knew that the relationship between business machines and post-
sales support resembled the relationship that Eastman Kodak had found between cameras and
film: customers may buy the former only once, but they need to purchase the latter over and
over. That's where the real money was.

When IBM started making computers and selling software to go with them, the software's source
code was naturally a trade secret. Source code is the program as the programmers wrote it; a pro-
gram called a compiler tranglates this into the binary file that is the software you buy and run.
The binary file is unintelligible to the eye, while the source code shows how the program really
works. Hobbyists show each other their source code, and computer science students hand theirs
in to be graded, but no IBM source code went beyond IBM.

In 1969, Ken Thompson of Bell Labs developed the first version of UNIX on a DEC PDP-7 for
his own use. (The name and several of the concepts were derived from an unfinished joint ven-
ture with General Electric and MIT called MULTICS.) Other Bell Labs programmers liked it,
used it, and added to it. It spread rapidly throughout Bell Labs, where it continues to be the dom-
inant operating system today.

Bell Labs parent company, AT&T, realized that they had something valuable on their hands, but
this was before the breakup of AT& T, when government regulations restrained them from get-

The Operating Systems Handbook 1 copyright 2001 Bob DuCharme



Chapter 2 UNIX: An Introduction

ting too far into the computer market. AT&T did license UNIX for inexpensive use by educa-
tional institutions, but with some twists to the typical licensing agreements that followed the
IBM pattern: instead of selling the operating system and being responsible for supporting it, the
deal included the complete source code and the understanding that there would be no support
available.

ULTRIX? XENIX? AIX? AUX? POSIX? DYNIX? MACH?
Sun0S?

AT&T registered "UNIX" as a trademark, so although anyone may create
their own version and market it, they may not call it UNIX. As a result, dif-
ferent companies have come up with their own names. We call these
slightly different versions "flavors" of UNIX. They often end in the letter
"X" so that they sound like the word "UNIX": DEC's ULTRIX, which runs
on their DECstation workstations; IBM's AlX, which runs on its RS series
of workstations; XENIX, developed for computers with Intel processors
(usually machines considered to be powerful PCs that otherwise run
DOS); Sequent's Dynix, and Apple's AUX. Sun Microsystems calls the
operating system for their workstations "SunOS," and the NeXT com-
puter uses an MIT-developed variant of UNIX called Mach.

POSIX is not an actual operating system, but a developing government
standard for a version of UNIX that any vendors must conform to if they
want to sell their UNIX products to the government.

The differences between these various flavors, from the user's point of
view, are usually slight—for example, an error message might be worded
differently. It's safe to say that if you're comfortable with one flavor of
UNIX, you can fake it on the others.

The Operating Systems Handbook 2 copyright 2001 Bob DuCharme



Chapter 2 UNIX: An Introduction

The bargain price of UNIX and its ability to run on many different computers quickly made it
popular in universities and small companies that were just acquiring their first computer. The
universities turned out computer science students who knew UNIX, and its popularity spread fur-
ther.

The lack of support remained a problem, however, so users banded together to support each
other. Some users formed a user group called /usr/group (a pun on the term "user group” and on
a UNIX subdirectory name) in order to pool the knowledge they had gained by studying the
source code. This could be considered the original UNIX cult—at least the first beyond Bell
Labs. Certain Bell Labs names (Kernighan, Ritchie, Aho, and Weinberg, among others) are still
the high priests of this cult.

BUZZWORD The Labs In addition to UNIX, the C programming lan-
guage, lasers, communications satellites, and the transistor, Bell Labs is
responsible for countless other things that we take for granted in the
world of computers and in everyday life. Many consider Bell Labs so im-
portant that they don't even need the word "Bell," so you will sometimes
hear people refer to "The Labs."

The extreme terseness of UNIX also contributed to its cultiness. Its most important commands
are only two or three letters long—for example, the command to list filenames, | s, and the
command to copy afile, cp. (Therea fun comes with commands that are abbreviated to look
like completely unrelated words. The command man has nothing to do with men; it brings up the
on-line manual. The command cat , which you will find in section 4.1, ("The Eight Most Impor-
tant Commands") has nothing to do with feline domestic pets. The command t ar is used for
tape archiving, and has nothing to do with road surfaces or Brer Rabbit; the wal | command is
used by system administrators to write a message to all terminals, and has nothing to do with the
sides of a building.)

These abbreviated commands, along with the use of symbols like the period, the double period,
the dlash (/ ), the pipe (] ), and the greater-than and less-than symbols (>, <), enable UNIX
users to put together flexible, powerful commands with a minimum of typing. People who don't
understand these commands and symbols find them intimidating. The combination of terseness,
power, and strange symbolsin a command like

The Operating Systems Handbook 3 copyright 2001 Bob DuCharme



Chapter 2 UNIX: An Introduction

ps -aux | grep ../getty | sort >> gettyproc.txt

reminds the uninitiated of the mystical symbols of alchemy, or worse, of assembly language.

2.1.1 Today

When the federal government ordered the breakup of AT& T on January 1, 1984, AT&T did ben-
efit from the deal: restrictions on many of their potential activities were lifted. Some of these re-
strictions had prevented them from getting too far into the computer industry. With their re-
moval, UNIX became a marketable product for them.

The power and flexibility of UNIX helped it to grow into a big business, but the cultiness was
hurting business. /usr/group, whose very name only made sense to the initiated, changed its name
to UNIX International in 1989. Complaints about the cryptic nature of UNIX commands and the
success of graphical user interfaces on computers like the Macintosh and the Amiga inspired
people to create interfaces for UNIX systems with windows and icons that could be controlled
with mice.

Computer science students still study UNIX closely at colleges and universities, because when
you study the responsibilities and methods of an operating system, the best way to learn is to
look at the source code of areal operating system. Although commercial versions of UNIX are
more proprietary these days and often too complex for students to understand the source code,
simpler versions of UNIX like MINIX and XINU have been developed specifically for students
to dissect and study.

Today, the graphical user interface versions of UNIX always have a window where you can type
in old-fashioned UNIX commands. In fact, they let you have severa of these windows at once.

These commands are not as difficult as their reputation; they're just very abbreviated. DOS and
Amiga users in particular will understand more about their PCS' operating systems when they
study UNIX, because so much of DOS and AmigaDOS were modeled on UNIX. (Knowing
about the UNIX heritage of DOS has earned me some easy money on two occasions—both
times, | earned sixty dollars for sending a single paragraph to the "User-to-User" column in the
back of "PC Magazine." Each one described a common UNIX trick that also worked on the DOS
command line.)

Workstations

Imagine that you had a PC so powerful that no existing personal com-
puter operating system enabled you to take full advantage of that power
and that you used some variant of UNIX instead. This is essentially what

The Operating Systems Handbook 4 copyright 2001 Bob DuCharme



Chapter 2 UNIX: An Introduction

a workstation is. Although their multi-tasking ability allows UNIX comput-
ers to be used by more than one person at once, workstations are usu-
ally used by one person at a time.

Workstations are also designed to communicate easily with each other.
Sun Microsystems, the company that first popularized UNIX worksta-
tions, is famous for its slogan "The network is the computer."”

Workstations usually have large, high-resolution monitors and graphics
capabilities far superior to those of other computers. Because of these
abilities, they are popular for scientific visualization and computer anima-
tion. This makes them far more glamorous (or in computer industry par-
lance, "sexy") than computers used for mundane tasks such as process-
ing purchase orders. As a result, workstations have become a popular
bandwagon. IBM had Hagar the Horrible selling its RS workstations,
Steve Jobs pushed his NeXT machine from the cover of Newsweek,
Hewlett-Packard bought out the popular workstation manufacturer Apollo
in order to gain an entry, and DEC brought out its DECstation.

Meanwhile, as personal computers and their operating systems get more
and more powerful, computer trade press journalists each write their an-
nual "We have to redefine what we mean when we say workstation" col-
umn.

2.1.2 USENET

When you know UNIX, you not only have the ability to deal with a wide variety of computers
from awide variety of manufacturers (not to mention the many "flavors' of UNIX—see sidebar);
you also have the tools necessary to take advantage of USENET.

The Operating Systems Handbook 5 copyright 2001 Bob DuCharme



Chapter 2 UNIX: An Introduction

Some people call USENET a giant computer bulletin board. From the user's perspective, it bears
a strong resemblance to a bulletin board; you can download programs and you can send elec-
tronic mail and programs to other users. You can read messages from people all over the world
and leave them yourself on any topic imaginable. It keeps many scientists and researchers far
more up-to-date on news in their fields than any journal published on paper could. In spreading
hot stories, USENET has often been known to scoop CNN.

It isn't really a bulletin board, though. USENET is actually much more dynamic than that. Rather
than a central computer where people log in to to see what's new, USENET provides a constant
flow of information between nodes, or computers designated to receive and send along this infor-
mation. If your system is hooked into one of these nodes, then your system is itself a node and
you have access to whatever portion of USENET is being pulled in to your node.

The Operating Systems Handbook 6 copyright 2001 Bob DuCharme



Chapter 3 Getting Started with UNIX

Chapter 3 Getting Started with UNIX

3.1 Starting Up

When you turn on aterminal connected to a UNIX system, or successfully connect to such asys-
tem over anetwork or phone line, the first thing you seeis the login prompt:

| ogi n:

As an authorized user of this system, you should have alogin name that represents your identity
on the system. Typeit in here and press the Enter key. The next prompt asks for your password:

passwor d:
Typeit in and press the Enter key. If al went well, you will be logged in.

A couple of things to remember:

* If you make a typing mistake, press Enter until the system asks you to log in again. Don't
try to use your Backspace or cursor movement keys to correct the mistake. Because the
computer probably doesn't know what kind of terminal you are using or emulating yet, it
may not understand the codes sent by these keys. If Joe User entersj ob, then presses the
Backspace key to get rid of the b and typeseuser, his screen may show that he has typed
j oeuser, but when he presses Enter the system may receive something that looks more
like ] ob”] euser as alogin name. It won't have a record of such a user and won't give
him access to the system regardless of the password that he types with this login name.

*  Some systems, if you log in in upper case letters, assume that you are using one of the old-
fashioned terminals that cannot type lower case letters. They will then display all text for
that session in upper case letters. Make sure you log in in lower case.

*  Just because the system asks you for a password doesn't mean that you entered the login
name correctly. It always asks. If it only asked when you entered a valid username, then
people trying to break in to the system would have an easy way to determine which login
names were valid.

* A login name may have no password. This may be the case the first time you log in. As
soon as you enter the login name, the system displays the screen indicating that you have
logged in.

Once you log in, the system probably displays some information about the particular system that

you are logged in to before it displays the prompt where you enter commands. The prompt usu-

ally appears asadollar sign ($) or apercent sign (%9, but can be easily changed.

There are ways to set up a UNIX ID so that, when someone logs in, a certain program automati-

The Operating Systems Handbook 7 copyright 2001 Bob DuCharme



Chapter 3 Getting Started with UNIX

cally runs whether that user wants it to or not. Y ou will often find arrangements like this for IDs
that have no password—this way, anyone can log in to run one particular program, but they can't
have the run of the system. | was once given a UNIX account just to use the mail program. When
| logged in, it automatically started up the mail program; when | quit the mail program, it auto-
matically logged me out.

3.1.1 Finishing Your UNIX Session

To show that you want to disconnect from the system, type:

exit

A shortcut available on most systemsisto type Ctrl+D.

BUZZWORD Box Many manufacturers produce computers that can run
UNIX, or some flavor of it, and users often identify the brand of hardware
being used in a given situation as a "box"—For example, "They're using
AT&T UNIX, but running it on an NCR box."

3.2 Filenames

Filenamesin UNIX can be up to 14 characters long and can consist of just about any characters.
Certain characters have specia meaningsin UNIX and could lead to trouble if used in filenames;
for example, you should avoid <, >, |, -, ?, [, ], and*. Most people use letters,
numbers, the underscore and the period. Because spaces are not allowed in filenames, the under-
score provides a way to make abbreviated filenames more readable. j ul _budget isamore un-
derstandable filename than j ul budget. Also, UNIX is case-sensitive—it would treat
BUDCET. TXT, Budget.txt, and budget.txt as three different files. Again, stick to
lower case.

Be careful about using a period for a file's first character, because this makes that file hidden.

This means that including its names in alist of files on the screen requires you to use a special
option when you use the | s command to list filenames. As a rule, UNIX users only begin very

The Operating Systems Handbook 8 copyright 2001 Bob DuCharme



Chapter 3 Getting Started with UNIX

specific filenames with a period. Section 6.2, "Command Files," covers two examples:
.profileand. | ogin.

3.2.1 Wildcards

The main wildcards in UNIX are the asterisk and the question mark. Although the examples be-
low demonstrate their use with the | s command, remember that you can use them with almost
any command that uses a filename as a command line parameter. For more information, see the
material on wildcards in section 1.5, "General Advice."

3.2.1.1 The Asterisk

The asterisk at the end of a filename has the same significance in UNIX that it has in most other
operating systems. It can represent zero or more characters at that position in the filename or file
type.

Thisistypical of many operating systems. In UNIX, however, the asterisk is much more versa-
tile, because it doesn't have to go at the end of the expression you type. For example,

I's *may

lists al the filenames that end with the letters "may," and

I's *may*

listsout all filenames with the letters "may" anywhere in them.
I's rpt*94

would list out all the filenames that began with the letters "rpt" and ended with the digits "94,"
regardless of how many characters are between them.

3.2.1.2 The Question Mark

The question mark represents a single character—no more, no less. Several question marks rep-
resent that number of characters, so that

I's ??2?294rpt. txt

would list out al of the filenames with exactly three characters before the characters " 94rpt.txt."

3.3 How Files Are Organized
Like many other aspects of UNIX, its file system has provided a model for many operating sys-
tems developed after it, such as PC/DOS and AmigaDOS. We call this system of file organiza-
tion tree-structured directories, which means that the disk is divided into sections called

The Operating Systems Handbook 9 copyright 2001 Bob DuCharme



Chapter 3 Getting Started with UNIX

directories. A directory can be divided into sub-sections called subdirectories, which can aso be
divided. The terms "directory” and "subdirectory" are used almost interchangeably, since every
directory—except the root—is a subdirectory of another.

To understand how the main directory, or root directory, leads to subdivisions which lead to sub-
divisions which lead to subdivisions, think of the branches of a tree. The root is like the tree's
trunk, which branches into several main branches. These main branches then divide into smaller
and smaller branches.

In a typical UNIX system, one of the main branches usually holds most of the programs that
come with the operating system. We call this the / bi n directory. Another main branch could
hold the software that was purchased for installation on this UNIX system. This branch might be
called / usr, and the system administrator would subdivide it into sections to hold each of the
software packages. For example, the UpRiteBase database package could be in one of these sub-
divisons in a directory caled /urbase. This subdivison's full name would be
[ usr/ urbase, becauseitisasubdirectory of the/ usr directory and the full name of any di-
rectory includes its pathname, or the name describing the path up the tree along the various
branches it took to get there. Since the UpRiteBase software package consists of quite a few
files, it is more efficiently organized if the system administrator divides the / usr/ ur base di-
rectory into subsections when installing it. The binary files sit in a branch called
[ usr/ urbase/ bi n, the files associated with the demonstration database that comes with it
arein asubdirectory called/ usr/ ur base/ deno, and so forth.

Notice how a slash character separates each component of the pathname. The pathname of the
root, or main trunk of the tree, is just a slash by itself. We create a complete pathname by com-
bining the names of the various subdirectories traversed to get to the subdirectory in question,
separating each with a slash, and by putting a slash at the very beginning to represent the root.

Figure 3.1 shows a sample UNIX directory tree structure. (Keep in mind that an actual system
would have many more branches.) A level of indentation represents a level of the subdirectory
structure; for example, the ninth line represents the subdirectory / usr / ur base/ sql . Thefirst
line shows the root directory.

No two directories can have the same name. Although you may see three subdirectories seem-
ingly named bi n in the directory structure in Figure 3.1, keep in mind that their complete path-
names are different: / bi n,/ usr/ bi nand/ usr/ urbase/ bi n.

/
bin
usr
bin
t np
ur base
bin
deno

sql
usr2
j oeuser

The Operating Systems Handbook 10 copyright 2001 Bob DuCharme




Chapter 3 Getting Started with UNIX

mai |

net wor ki ng
mar yj ones

nymai |

payrol |
j i nmcasey

i nventory. dbs

letters

Figure 3.1 Sample UNIX directory structure.

At any given time, one of these directories is your "current” or "default" directory. (An equiva-
lent expression describes you as being "in" that directory.) This matters to many of the UNIX
commands—for example, if you enter the command to erase a file but don't specify the directory
where the file is located, the system assumes that you want to erase afile in the current directory.
Section 3.3.2, "Moving between Directories,” shows how to make a new directory the current
one.

Each user is assigned his or her own subdirectory known as their home directory. The system ad-
ministrator assigns subdirectories to users as their own disk space in which to keep their personal
files. A UNIX system's directory structure has one or more main branches off the root to hold
these personal directories for the various users (in Figure 3.1, it's called / usr 2), just as main
branches exist to hold the software that they use.

In the example, / usr 2 leads to the subdirectories/ usr 2/ j oeuser, /usr 2/ maryj ones,
and/ usr 2/ jincasey, whichwould be the home directories for three different users.

These users can create and maintain subdirectories of their home directories in whatever arrange-
ment they like. Mary Jones might keep her correspondence in a subdirectory called
[ usr 2/ maryj ones/ nymai | and Joe User might keep his files pertaining to a new network-
ing project in a subdirectory caled / usr 2/ j oeuser/ net wor ki ng. Section 4.1.9, "Creat-
ing Directories," and section 4.1.10, "Removing Directories,” show you how to maintain subdivi-
sions of your own home directory.

3.3.1 Relative Pathnames

Because you can divide up subdirectories into so many subdivisions, full pathnames can get
long. UNIX provides two shortcuts to make it easier to refer to directories:

The Operating Systems Handbook 11 copyright 2001 Bob DuCharme



Chapter 3 Getting Started with UNIX

* You can substitute of two periods (..) where the system expects a pathname. This means that
the you are referring to the parent of the current directory, or one level closer to the root.
The parent of / usr 2/ maryj ones and /usr2/joeuser is /usr?2; the parent of
[ usr/ urbase is/ usr;andtheparentof /usr, /usr2, and/ binis/,theroot. Sec-
tion 3.3.2, "Moving between Directories,” gives an example of how to use the two dots as a
substitute for the parent directory's name.

*  Another shortcut makes it easier to refer to the child of the current directory (a subdivision
of the current directory). Note how al references to directory names up to now begin with
the dlash (/) character. You don't always need this; if you omit the slash, the system as-
sumes that you are referring to a subdivision of the current directory. For example, if Mary
wants to copy some mail messages from the / usr 2/ maryj ones directory into the
[ usr 2/ maryj ones/ nymai | directory, she could just enter mymai | as the destination
of her copy command instead of typing out / usr 2/ mar yj ones/ nymai | . Thisworks as
long as she was in the / usr 2/ maryj ones directory at that time. If she was in her
[ usr 2/ maryj ones/ payr ol | directory and entered mymnai | as the destination of her
copy command, the system would Ilook for a subdirectory called
[ usr 2/ maryj ones/ payrol | / nymai | and not find it. (Instead of giving you an error
message, it would create a file caled nymai | in the / usr 2/ mar yj ones/ payr ol |
subdirectory. See section 4.1.5, "Copying Files," for more information on the logic behind
this.)

We call these two shortcuts relative pathnames, because the system figures out the directory that
you are referring to relative to your current directory. If you enter acommand to copy filesinto a
directory called bi n, without a slash, this would mean the/ bi n directory if you were currently
in the root directory, the / usr/ bi n directory if you were in the / usr directory, or the
[ usr/ ur base/ bi n directory if you were currently in the/ usr/ ur base directory. (In real-
ity, you would not have permission to alter the contents of subdirectories outside of your home
directory unless you were the system administrator). Similarly, the directory that you refer to
when you type. . completely depends on which directory is current when you typeit.

3.3.2 Moving between Directories

When you first log in to a UNIX system, your current directory is the one assigned to your login
name by the system administrator. If you type | s, the command to list out filenames, the sys-
tem lists out the filesin the current directory. (The first time you log in to a given system and en-
ter this command, there may not be any filesto list out.)

The command cd, followed by the name of a directory, changes your current location into that
directory. For example,

cd /

puts you into the root directory, and

The Operating Systems Handbook 12 copyright 2001 Bob DuCharme



Chapter 3 Getting Started with UNIX

cd /bin

puts you into the / bi n directory. If you misspell a directory name so that your command tells
the system to change into a non-existent directory—for example, bl i n—it gives areply similar
to this:

blin: bad directory

When the command executes successfully, the system does not acknowledge that you have a
new working directory, but you can easily find out where you are at any given time with the
pwd, or "print working directory” command. This "prints’ the full name of your current direc-
tory on the screen. (See section 1.5, "Genera Advice," if the idea of "printing on the screen”
doesn't make sense to you.)

Changing the current working directory provides one example of how the use of relative path-
names can save you a great deal of typing. If your current directory isthe/ usr/ ur base/ bi n
directory and you want to changeinto the/ usr / ur base directory, you could type

cd /usr/urbase

but it would be much easier to type
cd ..

because / usr/ ur base is the parent directory of / usr/ ur base/ bi n. To change back to
[ usr/ urbase/ bin, justtype

cd bin

because the bi n directory that you want is a child directory of / usr/ ur base. Remember,
when you type cd bi n, the system looks for a child of your current directory called bi n. If
you had been in the root directory when you typed the same command, you would have ended up
inthe/ bi n directory, not/ usr/ ur base/ bi n.

3.4 Available On-line Help

There are two commands that may give you help after you log in. The first, hel p, isfairly ob-
vious. On many systems, typing hel p by itself starts up a menu-driven program that tells you a
great deal about using UNIX. Thefirst screen that it displays explains how to useit.

The man command may also assist you. In the great tradition of naming UNIX commands by ab-
breviating them until they look like completely different words (likecat tar, orwal | ) thisis
an abbreviation of the word "manual.” Being more old-fashioned than the hel p command, man
is used strictly from the command line—there are no menus to help you along. Type in man by
itself, and it tells you how to useit: you enter man followed by the word that you want to look up
in the manual. For a start, look up man itself by typing:

mn nan

The Operating Systems Handbook 13 copyright 2001 Bob DuCharme



Chapter 3 Getting Started with UNIX

(If ascreenful of text scrolls up and then stops, press the Enter key each time you want to scroll
to anew screen.)

It's possible that nothing happens with either the hel p or man commands. Both get the informa-
tion you request by looking it up in text files stored on the computer's hard disk for this purpose,
and some system administrators erase these files from the hard disk to make more room for other
files.

BUZZWORD Gen (pronounced "jen") When PC users think of putting an
operating system onto a computer, they think of copying the operating
system files onto their hard disk and maybe running a configuration pro-
gram to tell the operating system more specific information about the
hardware they are using. On a UNIX system, the system administrator
must run a program that takes various data and code files and actually
creates many of the operating system files. This is known as "generat-
ing" the operating system, but if you really know your UNIX slang you re-
fer to "genning" the operating system. For example, "I'm looking forward
to checking out the new features of the system upgrade, but | don't know
when I'll have the time to gen it."

The Operating Systems Handbook 14 copyright 2001 Bob DuCharme



Chapter 4 Using Filesin UNIX

Chapter 4 Using Files in UNIX

4.1 The Eight Most Important Commands

The shell isthe part of UNIX that interprets the commands that you type at the UNIX prompt. It
passes the instructions along to the kernel, the part of UNIX that does the real operating system
work. We call the basic operating system commands that you enter at the UNIX prompt "shell
commands." If someone in the middle of running a program talks about "accessing the shell" or
"shelling out,” they're talking about temporarily gaining access to the main system prompt where
they can type shell commands.

If you are using a graphical user interface version of UNIX and don't see a window where you
can type in commands, never fear—there's one in there somewhere. Either there will be an icon
(on a Sun workstation, it's alittle picture of a conch shell) or there's a main menu with "Shell" as
a choice. (To bring up such a menu, try clicking on the screen background—that is, with your
mouse pointer on the background picture, and not on any window or icon—with any buttons
available on your mouse.)

There are two basic versions of the shell, with several variations available. All the UNIX com-
mands described here work with both of the most popular ones, the Bourne shell and the C shell .
Many systems can run either one, so it's not a dumb question to ask which shell is the default on
agiven system.

The eight most important shell commandsin UNIX are:

l's lists file names.

cat displays the contents of files.

cp copiesfiles.

nv renames and moves files.

rm deletesfiles.

chnod grants and revokes access to files.
nmkdi r creates subdirectories.

rdir removes subdirectories.

4.1.1 Command Options: Switches

The Operating Systems Handbook 15 copyright 2001 Bob DuCharme



Chapter 4 Using Filesin UNIX

UNIX uses a hyphen (- ) to indicate options, or switches that give specia instructions about how
acommand should operate. For example, thel s command by itself only lists filenames, but with
the |l switch it lists other information about the file, and with thet switch it lists out the filesin
reverse chronological order instead of alphabetical order. Y ou could enter

I's

by itself, or you could enter

Is -1

to indicate that you want to see all the information about the files, or you could enter
Is -t

to see the filenames in reverse chronological order. You can also combine these switches; you
could enter

to see all the information about the filenames, listed in reverse chronological order. The order in
which you put the switches doesn't matter, as long as you remember to include the hyphen,
which means "here come the switches," and to avoid putting any spaces between the letters that
denote command-line options.

Section 4.1.3, "Listing Filenames," gives more information on using switches with the | s com-
mand. When you use UNIX's on-line help system to inquire about a command, it tells you all
about the command's various switches and what they do. Knowing that this information is avail-
able in on-line help is the main reason to not worry about memorizing a lot of command line
switches.

4.1.2 Common Error Messages

When you type anything at the UNIX command prompt, it looks for a program with that name
and executes it. If you make atyping mistake, for example

max nan

when you meant to type man man, UNIX gives you a message along the lines of

max: not found

This meansthat it looked for a program called max and couldn't find it.
Many commands expect you to include some information on the command line after the com-

The Operating Systems Handbook 16 copyright 2001 Bob DuCharme



Chapter 4 Using Filesin UNIX

mand's name. If you omit any, most UNIX systems display a terse explanation of how much in-
formation they expected. For example, to make a copy of afile, you must indicate the file you
want to copy and the name you want to give to the new copy. If you type the cp command by it-
self without any filenames, the system responds with something similar to this:

Usage: cp [-ip] f1f2; or: cp [-ipr] f1 ... fn d2

This shows you that you had to include at least two filenames (represented by f 1 and f 2) after
the cp command. The alternative syntax, after the or : part, shows that you could also type one
or more filenames followed by the name of a destination directory name, if you want to copy the
files to another directory. Remember—you can always type man cp for more detailed help on
the cp command.

Another common inspiration for error messages is when you instruct the system to do something
to afile that doesn't exist. For example, let's say you want to copy afilecalledt enpl at e. t xt
and call the copy may _bud. t xt , but you make atypo when you enter the command:

cp tenpalte.txt may_bud. t xt

The UNIX system responds with

cp: tenpalte.txt: No such file or directory

as if to say "There's a problem executing the cp command: | can't find any file or directory
namedt enpal t e. t xt."

Remember, the cp command is just used as an example here. Similar mistakes with many other
commands will elicit similar error messages. For a full explanation of the use of the cp com-
mand, see section 4.1.5, "Copying Files."

4.1.3 Listing Filenames

Thel s command lists out filenames. If you typel s by itself, it lists out the names of the filesin
your current directory in alphabetical order, along with the names of any subdirectories of the
current directory. Thislist might look like the following:

061293rr
062093rr. prn
06i f p. t xt
082294t s. t xt
083194vd. t xt
i ndex. t xt

mai | not es. t xt
prepprn. ank
rpt apr 94
rptfeb94

rptj an94

r pt mar 94

r pt may94
s_and_rep. ank
sanpl e. t xt

The Operating Systems Handbook 17 copyright 2001 Bob DuCharme



Chapter 4 Using Filesin UNIX

schedul e. t xt
text.txt

Y ou can put two kinds of parameters after thel s command:

e A directory name, which shows that you want to list the files in a directory other than the
current one.

» A file specification, which shows that you only want to list files whose names follow a cer-
tain pattern.

If you typel s followed by adirectory name, like this,

I's /bin

you will see several screenfuls of filenames from the / bi n directory scroll by alphabetically,

without stopping, until it ends with a screenful of filenames similar to the ones shown in Figure
4.1.

uuencode
uul og
uunare
uupi ck
uusend
uust at
uut o
uux

vax
vpl ot
wal |
who
wite
xar gs
xget
xsend
yacc
ypcat
ypchfn
ypchsh
ypmat ch
yppasswd
ypwhi ch

Figure 4.1 End of the output from the command Is /bin.

If you typel s followed by afilename, it only lists that file's name. For example, if you type

The Operating Systems Handbook 18 copyright 2001 Bob DuCharme




Chapter 4 Using Filesin UNIX

I's .profile

it showsyou this:

.profile

Thisisn't particularly useful unless you include wildcards when you specify the filename. For ex-
ample, to list al the files that begin with the characters "rpt" and end with the characters "94"
you would type

I's rpt*94

and perhaps see output similar to this:

rpt apr 94
rptfeb94
rptjan94
r pt mar 94
r pt my94

(For more information on using wildcards to specify the filenames you want included in your
list, see section 3.2.1, "Wildcards.")

If you want to see specific files in a specific directory, you can add the directory and filename
specification after the command. Don't put any spaces between them. For example, to list al the
filesinthe/ bi n directory that begin with the letter "I," type this:

I's /bin/l*

Y our output might look like this:

It just so happens that one of the files beginning with "I" in the / bi n directory is the "IS" pro-
gram itself. The/ bi n directory holds many of the most often-used commandsin UNIX.

4.1.3.1 Listing More than File Names

The | s command may have more switches than other UNIX commands: at least 20, depending
on the flavor of UNIX that you are using. There is a switch to put slashes next to the directory
names that show up with the filenames, a switch to list the filenames in chronological order in-
stead of alphabetical order, and a switch to reverse the order in which the names appear. Few of
these switches are worth memorizing; you can always use the man or hel p command to learn
about them.

The most important switch gives you the "long" listing of the files. It's not really longer, but ac-

The Operating Systems Handbook 19 copyright 2001 Bob DuCharme



Chapter 4 Using Filesin UNIX

tually wider—if you call it the "long" listing, it's easier to remember that the switch is the letter
"." It tellsthe | s command to give much more information about the files than just their names.
If you enter the command

ls -1

the output would ook something like this:

STW- WS- - 1 joeuser marketing 520 Jun 12 1993 061293rr

STW- WD - - 1 joeuser marketing 3592 Jun 20 1993 062093rr.prn
STW W -- 1 joeuser marketing 22305 Nov 6 1993 06ifp.txt
STW- WD - - 1 joeuser marketing 660 Aug 23 1993 082294ts.txt
STW- WD - - 1 joeuser marketing 542 Aug 31 1993 083194vd. t xt
STWPWAT-- 1 joeuser marketing 504 Jan 2 1994 index.txt
drwrwr-- 1 joeuser nmarketing 512 Nov 12 1993 il

STW W -- 1 joeuser marketing 66 Mar 22 1993 notes.txt

- WX WXT WX 1 joeuser marketing 33 Dec 4 1993 prepprn. ank
STW WA -- 1 joeuser nmarketing 47 Nov 28 1993 rptapr94

- WX WXT WX 1 joeuser marketing 165 Sep 6 1993 rptfebo4d
STW- W -- 1 joeuser marketing 98 Jan 2 1994 rptjan94
STWAPWAT - - 1 joeuser marketing 73 Dec 4 1993 rptmar94
STW- WS- - 1 joeuser marketing 44 Nov 28 1993 rpt nay94
STW- WS- - 1 joeuser marketing 46 Dec 4 1993 s_and_rep. ank
STW- W -- 1 joeuser marketing 512 Dec 7 1993 sanple.txt
STW W -- 1 joeuser marketing 276 Jul 8 1994 schedul e. t xt
STW WA -- 1 joeuser marketing 105 Nov 28 1993 text.txt

There's alot of information here. The last column to the right should look familiar; it's the file's
name. To the left of that is the date that the file was last modified, and to the left of that is the
current size of thefilein bytes. The columnsthat say j oeuser and mar ket i ng show thefile's
owner (usually the user who created the file) and the group that the user belongs to.

What is a group? UNIX lets the system administrator assign users to groups because it makes the
system administrator's job easier when giving or taking away system privileges. For example,
let's say that the system administrator Mary Jones has just installed a new spreadsheet program
on the system. In order to enable the 23 people in the accounting department to use it, she could
just give execution rights to the group "accounting” instead of typing 23 commands to individu-
ally give access rights to 23 people.

What are execution rights? And what's the cryptic column all the way to the left? (Ignore the col-
umn of ones just to the left of the j oeuser column—this column shows how many links this
file has to substituted names, an advanced UNIX trick.) The first column shows something called
the file's mode. The first character in the file's mode is usually either a hyphen (-) or ad. A hy-
phen means that the line describes a normal file, and a d means that it's a subdirectory of the di-
rectory whose files are being listed. The r's, w's, x's, and other hyphens show who has what
rights with that file or directory. Three kinds of rights are available when you access afile:

r Theright to read (look at or make copies of) afile.

w The right to write (make changes) to afile.

The Operating Systems Handbook 20 copyright 2001 Bob DuCharme



Chapter 4 Using Filesin UNIX

X Theright to execute afile. If afileis not some kind of program, execu-
tion rights areirrelevant.

You can assign one set of rights to the file's owner, another to the other people in the owner's
group, and a third set to everybody else. The second through fourth characters (after the one that
tells you whether it's a directory) show the owner's rights; the next three, the group's rights; and
the last three, everyone else's. Figure 4.2 illustrates this.

r w X r w X r w X

whose rights: owner's owner's group's everyone el se's

Figure 4.2 Key to file mode codes.

If ther, w, or x appears, that right exists for that category of user. A hyphen means that right
doesn't exist. For example, the following shows a filemode for a file that its owner can read or
write, that the owner's group can read, but not write, and that people outside of the owner's group
can not even read:

A programmer working on a new program might set its filemode to something like this:

- FWXT - XTI -X

This lets the programmer read, write, or execute the program, and lets everyone else look at it or
execute it, but not change it.

As mentioned above, a "d" instead of a hyphen in the first character of the first column means
that the name listed is a subdirectory of the current directory, not the name of afile in that direc-
tory. The rest of the characters in the file's mode mean the same thing that they do when describ-
ing afile, only they describe the privileges that users have when using that directory:

r Theright to read (list the filesin) the directory.
w Theright to write to (create filesin) the directory.
X The right to execute the cd command to change into that directory.

The Operating Systems Handbook 21 copyright 2001 Bob DuCharme




Chapter 4 Using Filesin UNIX

Try using the - | switch with thel s command to look at some of the filesin the/ bi n directory,
like the ones beginning with "c." With thel s command, any switches go before the file specifi-
cation (the part that shows which files you want to see):

Is -1 /bin/c*

The output |ooks something like this:

- T WXT - XT - X 1 bin bin 28672 Apr 14 1992 /bin/cat

- P WXT - XT - X 1 bin bin 43008 Apr 14 1992 /bin/cc

- P WXT - XT - X 1 bin bin 32768 Apr 14 1992 /bin/chgrp
- P WXT - XT - X 1 bin bin 26624 Apr 14 1992 /bin/chnod
- P WXT - XT - X 1 bin bin 32768 Apr 14 1992 /bin/chown
- P WXT - XT - X 1 bin bin 26624 Apr 14 1992 /bin/cnp

- P WXT - XT - X 3 bin bin 32768 Apr 14 1992 /bin/cp

- P WXT - XT - X 1 bin bin 73728 Apr 14 1992 /bin/cpio
- P WXT - XT - X 1 bin bin 28672 Aug 28 1993 /bin/crypt
- T WXT - XT - X 2 bin bi n 110593 Apr 14 1992 /bin/csh

It looks like the owner gets to read, write, and execute the files, and everyone else just gets to
read them and execute them. Who is the owner? Who is the group? The owner and group
columns both say "bin"; this means that the / bi n directory itself is akind of user, and auser in
its own group.

To change the read, write, and execute privileges of afile, use the chnod (change mode) com-
mand, which is covered in section 4.1.8, "Controlling Accessto aFile."

Besides - | , the other useful switch for the | s command is - x. Use it to list severa filenames
across the screen on each line of output. (Another fine example of computer programmers novel
approach to the English language is the way they abbreviate the word "across' with the letter
"x.") If you typed

Is -x /bin/c*

the output would look like this:

/ bi n/ cat /bin/cc [ bin/chgrp [/bin/chnod /bin/chown /bin/cnp
[ bin/cp /bin/cpio [bin/crypt [/bin/csh

(The number of filenames on each line varies from system to system.) This is especialy useful
when you list out more than 25 filenames; otherwise, these filenames won't al fit on the screen
at the same time. If you tried thel s / bi n command mentioned earlier, you probably saw the
names zoom up the screen until it reached the end, at which point you saw the last 25 filenames
from the directory. If you added the x switch and typed

Is -x /bin

you would see output like that shown in Figure 4.3.

acctcom adb ar as att basenane
bs cat cc chgrp chrod chown

The Operating Systems Handbook 22 copyright 2001 Bob DuCharme




Chapter 4 Using Filesin UNIX

cnp cp cpi o crypt csh dat e
dd df diff di rnane dis du
echo ed env expr fal se file
find grep i pcrm i pcs kill ksh

I d I'i ne I'n I ogin | or der I's
mai | mai | . new mai | . newnew nail.old make nesg
mkdi r m newgr p ni ce nm nohup
od passwd pdpll pr ps pwd
pyr red rm rmai | rmdi r rsh
sed sh sh. new si ze sl eep sort
strip stty su sum sun sync
tail tcsh tee telinit time t ouch
true tty u370 u3b u3bi10 u3bls
u3b2 u3b5 ucb unane uni ver se vax
we who wite

Figure 4.3 Sample output of Is -x /bin.

Switches can be easily combined. It wouldn't make much sense to combine the x and | switches,
because there isn't enough room to list out severa filenames to a line along with their sizes and
the other information that the | switch adds to the output. However, you could combine the |
switch with the t switch, which specifies that you want to see the filenames in reverse chrono-
logical order, likethis:

Is -1t

and see output like that in Figure 4.4.

STW WS- - 1 joeuser nmarketing 276 Jul 8 1994 schedul e. t xt
STW-IWT-- 1 joeuser marketing 98 Jan 2 1994 rptjan94
STW W -- 1 joeuser marketing 504 Jan 2 1994 index. txt
STW- WD - - 1 joeuser marketing 512 Dec 7 1993 sanple.txt
STW- WD - - 1 joeuser marketing 73 Dec 4 1993 rptmar94

- WX WXT WX 1 joeuser marketing 33 Dec 4 1993 prepprn. ank
STW WA -- 1 joeuser marketing 46 Dec 4 1993 s_and_rep. ank
STW- WD - - 1 joeuser marketing 44 Nov 28 1993 rptnmay94
STW- WD - - 1 joeuser marketing 105 Nov 28 1993 text.txt

STW- WD - - 1 joeuser marketing 47 Nov 28 1993 rptapr94
STWPWAT - - 1 joeuser marketing 22305 Nov 6 1993 06ifp.txt

- WX WXT WX 1 joeuser marketing 165 Sep 6 1993 rptfebo4d
STW W -- 1 joeuser marketing 542 Aug 31 1993 083194vd. t xt
STW WA - - 1 joeuser nmarketing 660 Aug 23 1993 082294t s. t xt
STWEWAT - - 1 joeuser marketing 3590 Jun 20 1993 062093rr.prn
STWAPWAT - - 1 joeuser marketing 520 Jun 12 1993 061293rr

STWA W - - 1 joeuser marketing 66 Mar 22 1993 notes.txt

The Operating Systems Handbook 23 copyright 2001 Bob DuCharme




Chapter 4 Using Filesin UNIX

Figure 4.4 Sample output of Is -It.

The order of the switches doesn't matter in any UNIX command. If you typed

Is -tl
you would see the same outpui.

Switches, like the rest of UNIX, are case-sensitive. For example, - r means "reverse the listed or-
der" while - R means "recursively list subdirectories® (list the contents of any subdirectories
along with the names of the files and subdirectories). Because of this, you need to be careful
about whether you type switches in upper or lower case. Most of them arein lower case.

Try using man or hel p to learn about the other switchesto thel s command.

4.1.4 Displaying a Text File's Contents

Another source of confusion for beginning UNIX users is the fact that commands used for more
than one purpose are not always named after their most popular purpose. The cat command,
which displays text files on the screen, is aso used to combine or "concatenate” files. cat isan
abbreviation of the word "concatenate,” even though it's used far more often to put the contents
of atext file on the screen. If you had afile called schedul e. t xt and typed

cat schedul e. t xt

the contents of the file would then appear on the screen:

Cct ober 10

10: 30 neet Dave C., Laurie. call Laurie first--should I bring new di skettes?
12: 30 | unch with Benny

2: 00 expecting call from Chicago office. Have page counts ready.

2:30 Anita's presentation--can | get out of going?

4:00 first draft of outline MJUST be ready

4.1.4.1 Looking at Text Files One Screen at a Time

One of UNIX's greatest strengths isits ability to make several programs work together, all by is-
suing one command. Although this is usually an advanced technique, combining the cat com-
mand with the mor e command is so useful that you should learn it as soon asyou learn cat .

When you display certain files with the cat command, you may notice that any files longer than

twenty-four lines scroll up and off the screen until the end of the file, at which point you are only
looking at the last twenty-four lines.

The Operating Systems Handbook 24 copyright 2001 Bob DuCharme



Chapter 4 Using Filesin UNIX

The nmor e command remedies this. (Many systems offer asimilar alternative called pg. If nor e
doesn't work on your system, try pg.) It takes what you send it and gives it back to you a screen-
ful at a time (nmor e has its own command-line switches that adjust, among other things, how
much it outputs at once when you send text to it, but the default value of twenty-four or twenty-
fivelinesisjust fine for most uses).

How do you send text to it? UNIX has a special symbol called the pipe (|) that means "take the
output of the preceding command and send it to be used as input by the following command.” (I
told you that UNIX was cryptic—it uses only one symbol to say al that.) Sometimes the pipe
symbol appears on screen, on paper, or on a keyboard key as an unbroken vertical line. It may
also appear as avertical line with agap in the middle.

If the schedul e. t xt file was 100 lines long, you could look at one screenful at a time with
this command:

cat schedule | nore

By doing this, you are "piping" the output of the cat command to be used as input for the nor e
command. After the first screenful appears, the message —\Vbr e—appears at the bottom of the
screen, as shown in Figure 4.5.

Cct ober 9

9: 00 Ed may have Knicks tickets for nme; bug himwhen he gets back from Toronto
10: 30 office supplies sales rep coning

12: 00 lunch with Benny postponed until the 10th

2:30 getting teeth cleaned--call 687-2300 first for address

4:00 Fed Ex new di skettes to Chicago

Cct ober 10

10: 30 neet Dave C., Laurie. «call Laurie first--should I bring new diskettes?
12: 30 lunch with Benny

2: 00 expecting call from Chicago office. Have page counts ready.

2:30 Anita's presentation--can | get out of going?
--Mre--

Figure 4.5 Output from piping schedule file through the more command.

The Operating Systems Handbook 25 copyright 2001 Bob DuCharme




Chapter 4 Using Filesin UNIX

Press the space bar (or, if you piped your output to pg, the Enter key) and another screenful ap-
pears. Continue this, and you can look at the file at your own pace—unless you want to quit, in
which case you type "q" instead of pressing the space bar.

nor e isn't limited to use with the cat command; you can aso use it with the | s command.
Typing this

Is -1 bin| nore

displays a screen similar to the one shown in Figure 4.6.

- TWXT - XT - X 1 bin bi n 63488 Jun 23 1992 acctcom
- T WXT - XT - X 2 bin bin 73728 May 11 1989 adb

- FWXT - XT - X 1 bin bin 49252 Apr 14 1992 ar

- FWXT - XTI - X 2 bin bin 110593 Apr 13 1992 as

- FWXT - XT - X 2 bin bin 30720 Apr 14 1992 att

- T WXT - XTI - X 1 bin bin 147 Apr 14 1992 basenane
- FWXT - XT - X 1 bin bin 77824 Apr 14 1992 bs

- FWXT - XTI - X 1 bin bin 28672 Apr 14 1992 cat

- FWXT - XT - X 1 bin bin 43008 Apr 14 1992 cc

- FWXT - XT - X 1 bin bin 32768 Apr 14 1992 chgrp
- P WXT - XT - X 1 bin bin 26624 Apr 14 1992 chnod
- FWXT - XT - X 1 bin bin 32768 Apr 14 1992 chown
- FWXT - XT - X 1 bin bin 26624 Apr 14 1992 cnp

- FWXT - XT - X 3 bin bin 32768 Apr 14 1992 cp

- FWXT - XT - X 1 bin bi n 73728 Apr 14 1992 cpio
- FWXT - XT - X 1 bin bi n 28672 Aug 28 1993 crypt
- P WXT - XT - X 2 bin bi n 110593 Apr 14 1992 csh

- P WXT - XT - X 1 bin bi n 32768 Apr 14 1992 date
- P WXT - XT - X 1 bin bi n 32768 Apr 14 1992 dd
-FWSI-Xr-X 1 root bi n 34816 Apr 14 1992 df

- P WXT - XT - X 1 bin bin 34816 Apr 14 1992 diff
--Mre--

Figure 4.6 Output from piping Is -l bin through more command.

Any command that sends text to the screen can also send it to nor e. Thisis a good example of
the real beauty of UNIX: instead of giving you a couple of big utilities that claim to do every-
thing you need, UNIX gives you many small ones that you can combine any way you like. If you
like a particular combination so much that you'll want to use it repeatedly, you can store those
commands in a shell script file and give this file any name you like. When you want to use your
shell script, you only need to remember the name you made up rather than the spelling and syn-
tax of the combination of commands. Section 6.2, "Command Files," shows you how to do this.

4.1.5 Copying Files

The Operating Systems Handbook 26 copyright 2001 Bob DuCharme



Chapter 4 Using Filesin UNIX

Copying filesin UNIX is simple. The command is clearly an abbreviation of the word "copy":
cp. To make acopy of your file with adifferent name, type

cp sourcefile destfile

where sour cef i | e is the file that you are copying and dest fi | e is the name of the copy
that you are making. (See section 3.2, "Filenames,” for information on valid filenames.) For ex-
ample, if you plan to edit afile called pr oposal and you're going to make so many edits that
you want a backup of your original before you start changing it around, you would type:

cp proposal proposal . bak

Thisisthe ssmplest form of the cp command. It assumes that the file you want to copy isin your
current directory and that you want to put the copy in the same directory. To get fancier, you can
use the syntax

cp / pat hname/ sourcefil e /pathname/destfile

where/ pat hnamne specifies the pathname, or full directory name, of the source and destination
files. Let's say Mary Jones tells Joe User that Herb sent her some electronic mail that he should
look at and add comments to. She says, "I saved it in the subdirectory of my home directory
called mymai | inafilecaled aug20. her b. I'll seeyou later. I'm flying to Phoenix in an hour,
and | want your comments when | get back.” Joe calmly sits at his terminal and types

cp /usr2/ maryjones/ nmymail/aug20. herb /usr2/joeuser

Notice that he included the source file's directory, the name of the source file, and the destination
file's directory, but not a new name for the destination file. If you omit the name of the destina-
tion file, UNIX gives it the same name as the source file—in this case, aug20. her b. (When
making a copy of a file in the same directory as the source file, you must specify a new
name—you can't have two files in the same directory with the same name.)

In section 3.3, "How Files Are Organized," we saw that you can use two periods (..) as shorthand
to refer to the parent of the current directory. You can also use a single period to refer to the cur-
rent directory. This doesn't come up when using the cd command, because typing

cd .
would be useless; it means "change my current directory to the one that I'm currently in." The
single period does come in handy, however, with the copy command. If Joe is in the

[ usr2/joeuser directory and wants to copy the aug20.herb file from the
[ usr 2/ maryj ones/ nmymai | directory into his current directory, he types:

cp /usr2/ maryjones/ nymail/aug20. herb

One more comment about copying that file from Mary's directory: Joe needs read privileges to
make a copy of it. If he got a message along the lines of "cannot unlink™ or the slightly more
comprehensible "permission denied,” then he would use the | s command with the - | switch, as

The Operating Systems Handbook 27 copyright 2001 Bob DuCharme



Chapter 4 Using Filesin UNIX

described in section 4.1.3.1, "Listing More than File Names," to see what kind of privileges were
assigned to that file. He doesn't need to look at all the filenamesin Mary'smymai | subdirectory,
so he types:

I's -1 /Jusr2/ maryjones/ nymail /aug20. herb

If he saw something like this,

SrW- - - - 1 maryjones narketing 147 Aug 20 1994 aug20. herb

he would see that the mode of that file was set so that Mary, its owner, could read it or writeto it,
but no one else could read it, not even other people in her group (like Joe). Secure in the know!-
edge that it's Mary's fault that he can't add the comments she's expecting, he sends her electronic
mail tactfully explaining why he couldn't do as she had asked.

If he could read the file and make a copy of it, he would then own the copy and be able to do
anything he wanted to it.

What happens if you name your new copy after an existing file? There may or may not be a
warning, depending on the UNIX system that you are using. The copy operation might take place
as if the existing file didn't exist, making a new copy over the existing file. Try copying over an
unimportant file on your system to see what happens. If there is no warning, you'll have to be
careful about destination filenames when using the cp command on your system.

What happens if you try to make a copy of afile that doesn't exist? Like for example, if you mis-
spell the filename of the sourcefile:

cp /usr2/ maryjones/ nymail/aug20. hreb /usr2/joeuser

UNIX would display a message telling you that it "cannot access (the source file),” which im-
plies that the file was there, but it couldn't get to it. In reality, it means that no such file exists.

4.1.6 Renaming Files

Like the command to look at atext file, the command to rename afile is named after one of its
less common uses. Since it's used to move files from one directory to another, the command is
nmv. Just as the copy command can make a new copy of afile in the same directory asthe original
file, but with a new name, the nv command can "move" a file within its current directory, but
with a new name—in other words, rename it. For example, if you typed

mv aug20. herb herbfile.txt

you would take the file called aug20. her b in the current directory and give it a new name:
her bfil e. txt.If youdidwant to move the file to another directory, perhaps from your home
directory to your / usr 2/ j oeuser / net wor ki ng directory, the syntax is similar to copying a
file from one directory to another:

mvy aug20. herb /usr2/joeuser/ networKking

The Operating Systems Handbook 28 copyright 2001 Bob DuCharme



Chapter 4 Using Filesin UNIX

Unlike copying, after this command executes, the original aug20. her b file will no longer be
in your home directory. You will find it in its new home, / usr 2/ j oeuser / net wor ki ng. If
you want to move it and give it anew name at the same time, it's easy:

mv aug20. herb /usr2/joeuser/networking/ herbfile.txt

When you refer to a file but don't specify its directory location, UNIX assumes that it's in the
current directory. If you want to do something with a file that isn't in the current directory, insert
its pathname in front of the filename. For example, if Mary had told you to move aug20. her b
out of her directory, instead of just making a copy, you would use syntax similar to when you
copied it out of her directory into your own:

nmv /usr2/ maryj ones/ mynmai | / aug20. herb /usr2/joeuser

Of course, you could have assigned a new name to it when you specified where it should end up.

Just as you can use the single period to specify the destination directory when you copy afile to
your current directory, you can also use the single period to specify the destination when you
move afileto the current directory:

mv /usr2/ maryjones/ nmymai | / aug20. herb .

Section 3.3, "How Files Are Organized,” shows you other ways to avoid typing out complete
pathnames.

A file's mode has no effect on your permission to rename afile, asit does with the cp command.
Regardless of the privileges assigned to afile, only the owner (the user who created the file) may
rename it. And remember: if you make a copy of someone else's file, you become the owner of
the copy. How do you find out who owns afile? You usethel s command with the- | switch to
list out that file's name and then look at the third column of information listed with the filename.

If you rename afile with a name that already applies to an existing file, the renaming takes place
with no problem. Or rather, it takes place with no problem for your renamed file—the previously
existing file with the same name is lost. For example, if you have files called schedul e. t xt
and decl13.txt and rename decl3.txt to be caled schedul e. txt, your origina
schedul e. t xt will belost.

If you try to rename a file that doesn't exist, UNIX gives you the same error message as when
you try to copy afile that didn't exist: "Cannot access (filename)."

4.1.7 Deleting Files

Think of deleting files as removing them, because that helps you to remember the command: r m
The syntax is simple; r mfollowed by the filename or filenames that you wish to remove. For ex-
ample,

rm schedul e. t xt

The Operating Systems Handbook 29 copyright 2001 Bob DuCharme



Chapter 4 Using Filesin UNIX

removesthefilecalled schedul e. t xt . Typing

rm schedul e. t xt j uneneno. t xt

removesschedul e. t xt andj uneneno. t xt .

To remove afile, you need write permission in the directory in which the file is located. If you
do not have write permission for the specific file you want to erase, UNIX displays a cryptic

message:

(filename): 444 node?

This means "Are you sure you want to remove this file, which has a mode of 444?7' Sometimes a
numbering system is used as a shorthand for the -rwxrwxrwx notation to describe the permis-
sions that make up a file's mode. Without explaining which numbers mean what, it's enough to
say that if you have write permission on afile that you're trying to erase, the system won't give
you the warning message. Answer the warning message with either a"y" for "yes' or an "n" for
"no," and press the Enter key. To be on the safe side, "n" is probably a better idea; you can then
usethel s -1 command to double-check the file's mode and then enter the r mcommand again
if you're sure that you want to erase that file.

Why would someone not have write permission of a file that they own? You might use the
chnod command to take away write permission from yourself for an important file to protect
yourself from accidentally erasing it. You'll still own that file, so you can always grant yourself
write permission for it with the chnod command. (For more on the chnmod command, see sec-
tion 4.1.8, "Controlling Accessto aFile.")

The r mcommand accepts wildcard characters in its argument. Be careful, though, because this
ability to remove more than one file at atime can lead to big mistakes. If you wanted to remove
all of thefiles that ended with ".bak" you would type this:

rm *. bak

Imagine that you made the simple typing mistake of adding a space after the asterisk:

rm* . bak

Just as the command r m schedul e. t xt juneneno. t xt removed the schedul e. t xt
and the j uneneno. t xt files, this command also specifies two things to remove: first, al the
files that match * and second, the file named . bak, if it exists. All the files that match * would
be all the filesin the current directory, so you could get yourself into big trouble.

What if you typed

rm maynenos

and received the following message:

rm naynmenos directory

The Operating Systems Handbook 30 copyright 2001 Bob DuCharme



Chapter 4 Using Filesin UNIX

Sometimes UNIX is not much more eloguent than Tarzan. "Me UNIX, maymemos directory.”
may menos isadirectory, and you can't remove it with the command that removes files. Section
4.1.10, "Removing Directories," explains how to usether ndi r command for this.

4.1.8 Controlling Access to a File

Use the chnod command to change afile's mode. There are two possible ways to specify the ac-
cess rights to your file: first, by a three-digit "octa” number (which means that each digit is
lower than 8, because the number iswritten in "base 8" notation); second, by initials representing
whose rights are being controlled, whether those rights are being added or removed, and what the
rights are. The latter way is easier to remember, so that's the best one for beginners to start with.

Use theseinitials to specify whose rights are being controlled:

u Y ou, the file's owner, the user.
g Other usersin your group.
o] Others outside of your group.

Asyou saw in section 4.1.3.1, "Listing More than File Names," the lettersr , w, and x indicate
read, write, and execute permission.

To show that you want to add or take away permission, use the plus (+) and minus (-) characters.

The complete format of the chnod command is:

chnod [ugo] +/-rwx fil enane

This command has the following parts:

e The[ugo] iswhereyou put the combination of the lettersu, g, and o showing whose per-
missions you are specifying. The square braces mean that you can leave this out. If you do,
the system assumes that you mean ugo—in other words, everybody.

*  Next, you put aplus sign when adding permission or a minus sign when removing it.

e After the plus or minus symbol, you put the combination of the lettersr, w, and x that in-
dicate the permission or permissions being added or taken away.

* Finaly, after a space, you type the name of the file for which you are specifying permis-
sions. You can use wildcards if you want to change the mode of several files at once.

Make sure that the string of characters showing the users, action, and permissions have no

The Operating Systems Handbook 31 copyright 2001 Bob DuCharme



Chapter 4 Using Filesin UNIX

spaces. The only spaces in the whole command should be right after the word chnod and just
before the filename.

For example, let's say you created a file with your resume in it. You cleverly give the file a bor-
ing name that won't attract attention, like "budget.old." Y ou then realize, however, that maybe a
clever name isn't enough; maybe your file needs more protection than that, so you check on its
permissionswiththel s -1 command, and see the following:

STW-FWAT - - 1 joeuser marketing 3590 Jun 17 1994 budget.old

Y ou and the people in your group may change it, and everyone may read it. Thisis not good, so
you first take away your group's permission to write to your file. To specify rights, you enter
"g-w" for "group-remove-write privileges."

chnod g-w budget. ol d

When you type "Is-I" to seeif it worked, you should see this:

STWr--r-- 1 joeuser marketing 3590 Jun 17 1994 budget.old

Next, you want to take away the permission of your group and the others outside of your group
to read the file. Instead of doing this in two separate commands, you can combine the g and the
o with the following command:

chnod go-r budget.old

You can also combine the permissions being given or taken away. In fact, the two preceding
commands could have been combined with the following command:

chnod go-rw budget. ol d

Until you feel comfortable with the chnod command, always usethel s -1 command after-
wards to make sure that you did exactly what you intended to the file's mode.

Y ou can aso grant or revoke permissions from more than one file at atime by using wildcards in
the filename. For example,

chnod go+rw *.txt

would set the mode of all the files that end with ".txt" so that your group and everyone else could
read them and write to them.

Try taking permissions away from yourself by entering u as the user whose rights are being con-
trolled. Then, try to read or write the file with the cat command or the vi editor. Then try giv-
ing permission back to yourself. (When fooling around with a new command like this, make sure
to use afile that means nothing to you!)

In section 6.2, "Command Files,” you'll see an example of execution permission being added to a
file.

The Operating Systems Handbook 32 copyright 2001 Bob DuCharme



Chapter 4 Using Filesin UNIX

4.1.9 Creating Directories

The commands to create and remove directories are both simple: nkdi r (make directory) fol-
lowed by a directory name creates a new directory and r ndi r followed by a directory name re-
moves a directory.

The rules governing valid subdirectory names are the same as those that govern valid filenames.
To create a subdirectory of / usr 2/ maryj ones/ mai | called ol dmai |, Mary could type
the following:

nmkdir /usr2/ maryjones/ mail /ol dmail

Relative pathnames also work; if Mary is aready in the usr 2/ mar yj ones/ mai | directory
(and she can always use the pwd command to check which directory she's in) then she only
needs to type this:

nkdi r ol dmai |

If she tried to create a subdirectory of one that she didn't own, like / bi n, the system wouldn't
allow her to. Typing

nkdi r / bi n/ wahoo

would cause an error message similar to the following:

nkdi r: cannot access /bin

which means that she doesn't have enough access to the / bi n directory to allow her to create
something new there. (In other words, she doesn't have "write" access, which would allow her to
create something in that directory.) The system administrator can create directories anywhere. In
fact, that's an important part of the system administrator's job—to create and maintain directories
to hold the system and application files.

One other word of caution: because of the similarities between names of files and names of child
directories, it's possible to try to create one of these when you already have used the same name
for the other. For example, if Mary had afile called ol dmai | and entered the command

nkdi r /usr2/ maryj ones/ ol dmai |

she would get a message similar to this:

nkdi r: cannot neke directory /usr2/ maryjones/ol dmail

Since the error message doesn't tell you why it couldn't make the directory, you'll have to watch
out for this yourself.

4.1.10 Removing Directories

The Operating Systems Handbook 33 copyright 2001 Bob DuCharme



Chapter 4 Using Filesin UNIX

The syntax and restrictions on removing subdirectories is similar to that of creating them. If
Mary had successfully created her ol dmai | subdirectory and she wanted to get rid of it, she
could type:

ridi r /usr 2/ maryj ones/ mai | / ol dnai

If she was already in the usr 2/ mar yj ones/ mai | directory then she can use the relative
pathname:

rrndi r ol dmai |

Just as she cannot create subdirectories of directories that she does not own, she cannot remove
directories that she does not own. Only the system administrator can remove any subdirectory on
the system.

One other obstacle could prevent someone from removing a directory: if it has either files or sub-
directoriesin it, UNIX won't let you remove it. Thisisreally a safety feature to protect you from
yourself. If Mary had gotten the message

rdir: oldmail not enpty

then she would use the cd command to change into ol dmai | to see what was there and either
erase what she found, move it somewhere else, or change her mind about deleting ol dmai | .

We saw what happens when you mistake a subdirectory name for afilename and try to remove it
with the r mcommand, which we normally use to remove files. The reverse is also a common
mistake; look what happens when you use the r ndi r command to try to remove a file. After

typing

rimdi r schedul e. t xt

the system responds with

schedul e.txt: not a directory

to let you know that you can't use this command with schedul e. t xt , because it is afile and
not a directory.

The Operating Systems Handbook 34 copyright 2001 Bob DuCharme



Chapter 5 The UNIX vi Text Editor

Chapter 5 The UNIX vi Text Editor

There are two commonly used editors on UNIX systems. The older one, known as ed, isaline
editor. (Most systems also have a more advanced version of ed called ex.)

The most popular editor on UNIX isafull-screen editor called vi . (Some people pronounce it as
a one-syllable word rhyming with "eye" and others pronounce it as the two letters that spell
it—"vee eye." | couldn't even find a consensus when | asked a roomful of Bell Labs employees.)
The name is an abbreviation of "visual editor.” vi has much more in common with modern word
processors than it does with ed. You can move your cursor anywhere on the screen and correct
the text under the cursor. You can scroll the text and search for specific strings of text. Y ou can
usevi to create anew text file, aswell asto edit an existing text file.

Vi isacommand-driven editor. You don't use function keys and menus to tell it what you want,
as with other text editors and word-processors; you type in commands, many of which are only
one letter long, and it carries them out. The advantage to this arrangement is that you can do alot
of different things with very little typing. The disadvantage is that many systems do not indicate
when you are in command mode and when you are entering text in insert or replace mode. This
leads to two common mistakes:

* You might accidentally enter a command when the system thinks that you are entering text,
so that you enter d3w to delete three words and the characters "d3w" show up in the middle
of your memo, program, or whatever you are writing.

*  The opposite problem also occurs: you type a word onto you document, such as "Hello,"
and the system thinks that you are doing whatever the H command means, followed by the
e command, followed by thel command twice, and so on.

The best way to avoid this problem is to double-check your current mode when you are unsure
by pressing the Escape key. The Escape key puts you into command mode, and if you press Es-
cape when you are already in command mode, the terminal beeps at you, as if to tell you, "Enter
command mode? We're already in command mode."

Because many programs and operating systems require you to press the Enter key after you enter
acommand, it is tempting to do so with vi , but unnecessary with most commands. In fact, if you
enter an i command (which puts you into insert mode) and then press Enter, you insert a car-
riage return into your document. If you press Enter in command mode when it didn't make sense
in the context of what vi thought you were doing, it would just beep at you. Asavi beginner,
get used those beeps!

5.1 Entering vi

To enter vi , type vi followed by the name of the file that you want to edit at the UNIX shell

The Operating Systems Handbook 35 copyright 2001 Bob DuCharme



Chapter 5 The UNIX vi Text Editor

prompt. If afile with that name does not exist, vi creates an empty, new file with that name. If it
does exist, vi displays that file on your screen and waits for you to edit it. If you do not include
afilename, you will still enter vi , but you must assign a filename later. See "Saving Y our File"
below.

When you first enter vi , you are in command mode. Y ou can use your cursor keys to move your
cursor around the screen to any place with text at any time in command mode. (Sometimes you
can move your cursor like thisin insert mode, but there's a greater chance that vi will act flaky,
particularly if you use a PC running a terminal emulation program and not areal terminal.) If a
file is too long to completely fit on the screen at once, move your cursor to the bottom of the
screen and then continue to press the Cursor Down key to scroll the file up, revealing more text.
If there are more lines above the one visible at the top of your screen, move the cursor to the top
of the screen and continue to press the Cursor Up key to scroll the file down, revealing the text
above the line that was at the top of your screen.

If your fileis not long enough to fill up ascreen, vi represents lines that have no text with atilde
symbol (~). If you enter

vi johngay. txt

and that file has only seven lines, you will see a screen like the one in Figure 5.1.

Thy Younglings, Cuddy, are but just awake,
No Thrustles shrill the Branbl e-Bush forsake,
No chirping Lark the Wl ken sheen invokes,
No Dansel yet the swelling Udder strokes;

O er yonder H Il does scant the Dawn appear,
Then why does Cuddy | eave his Cott, so rear?

L L A A A A A

"johngay.txt" 7 lines, 265 characters

Figure 5.1 Opening vi screen when editing a seven-line file.

The Operating Systems Handbook 36 copyright 2001 Bob DuCharme




Chapter 5 The UNIX vi Text Editor

Note also that it tells you at the bottom of the screen the name of the file you are editing and how
many lines (including blank ones) and charactersit has. If you had created a new file with the vi
command, it would say "New File" at the bottom.

5.2 Inserting Text

To insert text, first move your cursor to the place where you want the new text to begin. Make
sure you are in command mode (as mentioned above, if you're not sure whether you're in com-
mand mode, press the Escape key first). Type alower casei to put vi into insert mode. If you
are lucky (if you are using or emulating a more sophisticated terminal), the word "INSERT" or
something similar appears somewhere on your screen to indicate that you are in insert mode. If
not, you won't see anything happen, but all the text you type until the next time you press Escape
appears at the cursor as part of your file.

If you type to the end of the line, the cursor jJumps to the next line, but only as an alternative to
running off the right of the screen—it didn't really insert a carriage return character at that posi-
tion in your file, so make sure to press Enter when you are inserting text and your cursor nears
the right side of your screen. When you finish entering new text, press Escape to return to com-
mand mode.

5.3 Deleting Text

The lower case x has the same effect in vi as the delete key on many keyboards: it deletes the
character at the cursor. Pressit as many times as you like to get rid of more than one character.

To delete more than one character, it is often easier to use the d command. Pressing d by itself
does nothing; vi waits to find out what to delete. The d is used in combination with other letters
and numbers to delete words, lines, the rest of a sentence, or the rest of a paragraph. The most
important of these for a beginner is the dw command, which deletes from the cursor to the begin-
ning of the next word. Y ou can stick a number in there to delete more than one word; for exam-
ple, d4w deletes the next four words.

The dw command can aso delete a blank line, like the one between "No Damsel yet" and "O'er
yonder Hill" in Figure 5.1.

When you usevi commands that consist of more than one character, you may occasionally enter
a character or two without being sure of how many you just entered. Again, the Escape key al-
ways puts you back to a fresh start in command mode. If you're unsure whether you typed d or
d4, press Escape and type d4 again. (If you accidentally typed an extra "4" after your d4, you
could end up deleting 44 words!)

The Operating Systems Handbook 37 copyright 2001 Bob DuCharme



Chapter 5 The UNIX vi Text Editor

5.4 Typing Over Existing Text

All the vi commands that we have seen so far have been lower case letters. To enter overstrike
mode, you'll use your first upper case vi command. Type R to enter Replace mode, and every-
thing you type writes over the characters at the cursor until the next time you press Escape. (A
lower case r has a related function: it means you only want to type over one character, so the
next character you type appears at your cursor, but vi then puts you right back into command
mode. Thisis useful for making very minor corrections.)

If you reach the end of aline while typing in replace mode, you can continue typing. vi will add
your new text to the end of the line at the cursor position.

5.5 Searching for Text

To search for astring of characters in your document, first press the slash (/) key while in com-
mand mode. The slash appears in the lower-left hand corner of your screen, waiting for you to
type in the characters to search for. After you type them and press Enter, vi will search for the
characters and display that part of the document if the string is found. The search is case-
sensitive, so make sure you type the letters in upper case and lower case exactly as you want to
search for them.

5.6 Saving Your Changes

vi inherited many commands from older UNIX text editors such as ed and ex. High on the list
of these commands are those that save your work, indicate another file to edit, and exit from the
editor.

This category of commands has its own prompt. To display it, type acolon (:) while in command
mode. The prompt, which is also a colon, appears in the lower-left corner of your screen. If you
type a command at this prompt that vi does not understand (which includes upper case versions
of commands that should be in lower case), it displays an error message telling you that it doesn't
recognize the command. For example, if you enter "potrzebie" at the colon prompt, vi responds
with "potrzebie: Not an editor command" or "potrzebie: No such command from open/visual."

To save your work, type a w for "write" at this prompt. If you put a filename after the w, vi
saves the file with that name. If you type w alone, vi saves your file with its current name and
displays a message telling you the file's name, the number of linesin it, and the number of char-
acters. Thefirst time you save a particular file, it also says"[New file]."

If you've created a new file but try to save it with the name of an existing file, vi displays a mes-
sage like this:

The Operating Systems Handbook 38 copyright 2001 Bob DuCharme



Chapter 5 The UNIX vi Text Editor

File exists - use "W filenane.txt" to overwite

This means that you tried to save a file with a name that already exists and that you must put an
exclamation point (a "bang") after the "w" to override the warning. Although the warning mes-
sage shows the filename in the syntax, you don't need to include it if the file already has a name;
just typew! at the colon prompt.

BUZZWORD Bang The exclamation point comes up a lot in UNIX. In ad-
dition to its use in vi , it's sometimes used to distinguish the components
of an electronic mail address when sending mail through a big network to
another UNIX machine. Because "exclamation point" can be a real
mouthful if you have to say it often, the term "bang" is often used.
(Another cute one is "Ballbat.") If someone tells you to "type w bang
space filename dot txt," they're telling you to type w fi | enane. t xt .

If you entered vi by merely typing vi at the UNIX shell prompt and then created a new file
from scratch, it won't have a name yet, so entering w by itself at the colon prompt causes vi to
display the message "No current filename." In other words, type the w command again, but in-
clude afilename thistime.

You can't edit just any file, or create a new one in just any directory. If you only have read per-
mission for afile, you can still bring it up into vi ; when you do, the editor displays the message
"[Read only]" at the bottom of your screen. Y ou can make al the changes you like, but when you
type the w command at the colon prompt and press Enter, vi doesn't save the file; it displays the
message "Fileisread only" instead. Y ou may save the changed file with a new name by adding a
filename after the w command. This is based on the same principle as copying a file that you
only have permission to read—if you make a copy, you own the copy, and you can do anything
you want to that copy, but you aren't allowed to make any changes to the original.

If you don't even have read permission for afile, vi starts up but displays a message that says
"Permission denied.” It shows you an empty file, just asif you had typed vi by itself at the com-
mand line.

5.7 Quitting vi

The Operating Systems Handbook 39 copyright 2001 Bob DuCharme



Chapter 5 The UNIX vi Text Editor

To quit vi and return to the UNIX shell prompt, type "g" at the colon prompt. If you made any
changes without saving them, vi gives you the message

No wite since | ast change (:quit! overrides)

instead of quitting. This serves as a reminder that you might want to save your file before you
quit, and it also reminds you that if you really want to quit without saving your changes, put an
exclamation point after the "qg." (It really suggests that you spell out the word "quit" and then put
an exclamation point, but spelling out an entire English word would be very un-UNIX, so just
enter a"q.")

You can combine commands at the colon prompt. To save your file and quit vi in one com-
mand, type "wq" at the colon. vi displays a message telling you that it is writing the file to the
disk, and it then returns you to the UNIX shell prompt.

5.8 Other vi commands

The commands described here are the bare minimum that you need to get by in vi . There are
many, many more; they are powerful and often confusing. vi has a reputation among people ac-
customed to normal word processors as being more cryptic and confusing than UNIX itself. This
often stems from the fact that someone once tried to teach them all of vi at once, instead of
showing them the basics, letting them get comfortable, and then showing them alittle more.

To learn more about vi , check the quick reference cards that are available. Also, nearly every
book on UNIX devotes a chapter to it.

There are two more tricks that you should know in case you find vi acting flaky. Usually it's not
vi itself that's causing the trouble, but a lack of cooperation between a terminal emulation pro-
gram on a persona computer and the system running vi .

The first trick sometimes makes cursor control easier. Before computer users took it for granted
that every keyboard had special keys devoted to cursor movement (yes kids, there was such a
time), theh, j, k, and| keyswere used asthe vi commands to move the cursor left, up,
down, and right, respectively. If you can remember which four letters are used (they're lined up
next to each other on the keyboard), then you can easily remember the purpose of the h and the|
because they sit at the left and right of these four keys. | for up and k for down are a little more
difficult to remember, and | aways need to press them a couple of times to remember which
does what. As with any vi command, make sure that you're in command mode when you press
these four keys, or you'll add their letters to your file in places where you don't want them.

Many touch typists with cursor keys on their keyboard actually prefer the use of these four letter
keys over the cursor keys when they move their cursor around, because they can find them with-
out looking down and moving their hands away from the middle of the keyboard. If this doesn't
apply to you, but your cursor keys don't behave correctly when you edit a file with vi , try using

The Operating Systems Handbook 40 copyright 2001 Bob DuCharme



Chapter 5 The UNIX vi Text Editor

these alternate keys for cursor movement.

The other trick for people who find that vi does not cooperate with their terminal emulation pro-
gram as much as they would like is the redraw command. If you delete characters without seeing
them deleted from the screen, or come across other situations where the words on the screen
don't reflect the commands you just entered, pressCt r | +L to tell vi to resend the whole screen
to your terminal. Your terminal emulation program may have retained or deleted a couple more
characters on the screen than it was supposed to. Although the wrong characters may be on the
screen, this doesn't necessarily reflect what's in the copy of the file being edited. Ctr | +L
straightens out your terminal emulation program by redisplaying the true contents of that portion
of thefile that you are editing.

Don't worry about the need for this unless you notice vi acting strangely. It's still a good idea to

use the cat command to look over any file created or edited with vi after you've saved the file
to disk, just to make sure that your terminal emulation program didn't play any tricks on you.

The Operating Systems Handbook 41 copyright 2001 Bob DuCharme



Chapter 6 Using aUNIX System

Chapter 6 Using a UNIX System

6.1 Printing Text Files

The original term for the machine that printed your file on hard copy was "line printer," because
it printed text aline at a time. The command to send text to the printer is an abbreviation of "line
printer": | p, pronounced "el-pee." Don't worry if you're attached to alaser printer, which is actu-
ally apage printer; it's still the same command.

To print afile, just type:

Ip filenane

It's that simple. If the file exists, the system sends it to the printer and UNIX displays a message
similar to this:

request id is hpl-1151 (1 file)

The request id is the name by which the system remembers your file. It comes in handy when
you want to list out the jobs that are waiting to print and when you want to cancel a print job. If
you get an error message (other than the kind indicating that the system didn't understand the
filename you typed) contact your system administrator. Various details about printing can be
specific to each UNIX system (like the name the system uses to refer to each printer) and you
can't be expected to know them on a strange system.

6.1.1 Checking the Print Queue

To find out the status of jobs waiting to print on the "line printer,” the command is| pst at . If
Joe User just printed a very short job and no other jobs were waiting to print, it may be too late,
so | pst at may display no information. This means that the system has aready sent his file to
the printer. On the other hand, he may see something like this:

$ hpl-1151 maryj ones 5,232 Jul 19 09:50 on hpl
$ hpl-1158 j oeuser 1,491 Jul 19 09:53 on hpl
$ hpl-1159 jincasey 2,781 Jul 19 09:53 on hpl

This means that three print jobs are waiting to print on the printer that the system administrator
named "hpl"—a 5,232 byte job that Mary Jones sent at 9:50, then your job, and finaly Jim

Casey'sjob.
6.1.2 Canceling Your Print Job
Perhaps Joe realizes, looking at the print queue, that he accidentally sent a draft of a memo about

why he can't stand Jim Casey. Since he doesn't want it to pop out of the printer while Jim stands
there waiting for his 2,781 byte job, he cancels his with the cancel command followed by the

The Operating Systems Handbook 42 copyright 2001 Bob DuCharme



Chapter 6 Using aUNIX System

request id:

cancel hpl-1158

Only you and the system administrator are allowed to cancel your jobs.

6.2 Command Files

In UNIX, afile full of commands that you can execute as a program is called a shell script, be-
cause it's a script of commands for the shell to execute one after the other. Shell scripts can be
complex, but simple ones can also be useful—especially for users who have trouble remember-
ing alot of UNIX syntax.

We saw in section 4.1.2 ("Common Error Messages') that when you type anything at the shell
prompt, UNIX looks for a program to execute with that name. When you create a shell script,
you are essentially adding a new command to your UNIX environment. If you write a shell script
that contains valid shell commands and store them in a file called "wahoo," then typing "wahoo"
starts up your new program.

For example, let's say you're aDOS or a VAX/VMS user and accustomed to typing di r to seea
list of filenames. Y ou're also used to seeing the size and age of files along with their names, and
you don't want them to zoom off your screen if there are more than twenty-four of them. The fol-
lowing UNIX command lists files this way:

Is -1 | nore

Thisiskind of a pain for the new user to remember. So, to make things easier for yourself, you
usevi to createafilecaled"dir" which only hasonelineinit:

Is -1 | nore

After you save your one-line text file and return to the shell prompt, you can't wait to try your
new program, so you type

dir

and UNIX displays a message telling you "execute permission denied" or worse, "not found.”" No
execute permission? Not found? But you own it! You just created it! Check out the mode of your

dir fileby usngls -1, the very command that you planned to avoid by creating the di r
shell script:

Is -1 dir

You'll see that it has a mode of something like -rwr--r--. (You don't need the| nore
when you check out the di r file's mode because you only want to list one filename, so there's no
need to use the nor e program to make the | s output appear a page at a time.) The system ad-
ministrator sets the default file mode for everyone's new files. This default usually doesn't in-
clude execute permission, because system administrators assume that most of the files you create

The Operating Systems Handbook 43 copyright 2001 Bob DuCharme



Chapter 6 Using aUNIX System
will not be shell scripts.

Asyou saw in section 4.1.8, "Controlling Access to a File," we use the chnod command to add
privilegesto afile. In this case, you want to give yourself execution privileges for your di r pro-
gram:

chnmod u+x dir

Now when you type di r, it should have the same effect astypingl s -1 | nore. Youve
written your first useful, working shell script!

At this point, your shell script only works for you if you are in the same directory as the shell
script file. Ask your system administrator for help modify your search path, which determines
where UNIX looks for programs to execute when you type a command name at the shell prompt.
If you store your shell scriptsin their own subdirectory of your home directory and add the name
of that directory to your path, you can use your scripts no matter which directory you arein.

6.2.1 The Automatic Login Command File
If you type

Is -a

you may see one or more files that you didn't see before in the list of files in your home direc-
tory. The a means "al,"” and tells | s to include the "hidden" files from that directory in the list.
As you can see, they're not hidden very well; they all have a period (.) as the first character in
their filename. Typing

ls -1 .*

is another way to list these files—you're telling UNIX to list the files whose hames begin with a
period.

One of these filesis caled either . profil e or. | ogi n (pronounced "dot profile" and "dot lo-
gin"). Both are shell scripts; whenever you log in, the system looks for . profi | e if you are us-
ing the Bourne shell or . | ogi n if you are using the C shell and executes it automatically. This
means that, if there's any commands that you want executed every time you log in, you only need
to add them to that file. (If you don't have one, you can create it the same way you create any
other shell script. Just remember to store it in your home directory and to give yourself permis-
sion to execute it with the chnmod command.)

For example, you could add the lines

mai |
cat schedule.txt | nore

toyour . profileor.!|ogin file. Thefirst line, as you will see in the next section, checks to
see if you have mail (although some systems automatically check for this when you log in any-

The Operating Systems Handbook 44 copyright 2001 Bob DuCharme



Chapter 6 Using aUNIX System

way) and the next displays afile called schedul e. t xt one page at a time. If you keep your
appointmentsin thisfile, it's handy to have them listed like this whenever you log in.

Some systems automatically createa. profi | e or. | ogi n file when the system administrator
creates a new user ID. If this happens with your 1D, the shell script probably has some strange-
looking commands in it. Try looking these up with the man or hel p commands.

When you add new commands, add them at the end of the file. To test your revised automatic lo-
gin script to see if it works, you don't have to log off and log back in again; as with any shell
script, you can just type its name to start it up.

6.3 Communicating with Other Users
You can send mail to someone by merely typing the word mai | followed by the login name of
the person getting the mail. For example,

mai | maryj ones

indicates that you want to send mail to Mary Jones. The mail program then waits for you to type
in your message, but it doesn't give you any proper editing capabilities. It's better to use the vi
editor to create atext file with the message that you want to send, and then "send” that file to the
mail program the same way that you sent a file to the nor e command when you wanted to see
the file's text one screen at a time: with the pipe (|) symbol. The following command sends the
file072194nj . t xt to Mary Jones mailbox:

cat 072194nj.txt | mail naryjones

You can send any text file to someone with this trick, not just one that you created yourself for
this purpose.

6.3.1 Receiving Malil
To check whether you have any mail, smply type
mai |
all by itself at the UNIX prompt. If you have no mail waiting for you, it tells you something like
No mail .

and returns you to the UNIX prompt.

If you do have mail, this enters the mail program. It first shows you either the message most re-
cently sent to you or alist of headers that describe who sent the messages in your mailbox and
when they sent them. Then, the mail program's prompt—usually either a question mark or an
ampersand—appears. The mail program has at least twenty commands that you can type at this

The Operating Systems Handbook 45 copyright 2001 Bob DuCharme



Chapter 6 Using aUNIX System

prompt, but you only need a couple to get by. As with most programs, the most important com-
mand is the one that tells you about the others: the question mark.

The system numbers your messages and shows these numbers in the list of mail headers. You
can refer to these messages by number; for example, entering d 3 at the mail program's prompt
means " del ete message number 3."

Y ou don't have to use the numbers, especialy if you're a beginner. Keep in mind that when you
don't include a number in a command entered at the mail program prompt, the system treats the
command asif you're referring to the "current” message. The simplest way to see which message
IS current is to enter the p command without any number. This displays ("prints') the current
message. It's a good idea to do this before you delete a message with the d command, to make
sure that you're deleting the right one.

Among the available commands, here are the important ones:

? List the available commands in the mail program with a brief descrip-
tion of each.
p Print the current message on the screen. The message will have a

header describing, at the very least, the date and time that it was sent
and the sender's login ID. It may aso include other information with
lots of numbers, initials, and punctuation. This is information that the
mail program uses to route the message; it may be useful to your sys-
tem administrator if you have any problems sending or receiving mail.

+ Move forward to the next message and print it. If there is no next mes-
sage, this may return you to the UNIX prompt. The letter n, for "next,"
also works.

- Print the message before the current one.

1 (Or any other number) When you enter a number without any other
characters, you're telling the mail program to print the message with
that number. See the h command to find out how to see the messages
numbers.

s [fil enane] Save the current message with the filename shown. The filename is
optional; if you don't include it, the mail program saves the message in
your current directory with the name nbox. (If nbox aready exists,
the mail program will add the message to the end of the file.) Saving a
message deletes it from your mailbox, which makes sense, because
onceyou saveitin afile, you don't need it in your mailbox anymore.

The Operating Systems Handbook 46 copyright 2001 Bob DuCharme



Chapter 6 Using aUNIX System

d [1] Delete the current message. If you specify a number after the d com-
mand, the mail program deletes the message with that number. After
you enter this command, the mai | program shows you the message in
guestion. The system doesn't actually delete it until you leave the mail
program; the u command unmarks a message that you've marked for
deletion.

h Print out active message headers. (Not all mail programs provide this
command.) The message headers show one line of information about
each message in your mailbox. This line will include the login name of
the person who sent you the message, the date and time it was sent,
and the size of the message in bytes. (If the size appears as two num-
bers with a slash, like 11/266, these numbers represent the number of
lines in the message and the number of bytes.) A greater-than symbol

(>) on the left of the screen shows which message is current; many
mail programs also have a column with a one-letter code that tells you
more about the status of each message: "u" for unread, "s" for saved,
"d" if it was marked for deletion, or "n" for new.

r Reply to the current message. After you enter r and press Enter, the
mail program may prompt you for the subject of your message, and
then you will have a seemingly blank line. Enter the first line of your
message, press Enter, and continue to type in your reply. Type it care-
fully, because each time you press Enter there's no going back to edit
that line. When you are done, type a period (.) as the first character of
anew line and press Enter.

If thissounds like apain, it is. If you want to send areply of more than
two or three lines, jot down the login ID of the person that sent you
this message, quit out of the mail program, and send them mail the
normal way by first composing it in atext file with vi and then send-
ing it to the mail program with the pipe symbol.

q Quit out of the mail program and return to the UNIX prompt.

6.4 A Sample UNIX Session

You just received the following fax from your boss Mary in Phoenix:

Joe - | just renenbered that there's some confidential stuff in the
aug20. herb file, so | may have set it so that only |I could read it.

If you had any trouble, nost of the info fromit is in another file
in ny home directory called seppronp.txt. Everyone el se has made
copies of that, so you can't have any problens copying it to your own
directory. Look it over, and then give ne a status report on your
responsibilities in the special pronotion we're doing I n Septenber

The Operating Systems Handbook 47 copyright 2001 Bob DuCharme



Chapter 6 Using aUNIX System

Just e-mail nme your status report; I'Il log in from Phoenix to read it.
Make sure it's there by Wednesday at 9AM Arizona time.
- M

No problem, except that you haven't done half the work that you're supposed to on the September
promotion. First step: you'll print out your own notes on the promation, which you've stored in a
filecalled pr onpl. t xt . You type the following command:

I p pornol.txt
The system responds with the message
request id is hpl-1343 (1 file)

so you know that your file is queued for the laser printer. But wait! You mistyped "promol.txt"
as "pornol.txt,” accidentally sending the first chapter of your erotic work-in-progress to the
printer! Not only is your eventual masterpiece not ready for a publisher yet, it's definitely not
ready for the secretaries who hang around the laser printer waiting for their memos to come out.

Y ou don't panic. Instead, you type

| pst at

to see the print queue, and you see the following:

$ hpl-1318 m opez 3,275 Aug 22 11:31 on hpl
$ hpl-1325 j i ncasey 1,381 Aug 22 11:33 on hpl
$ hpl-1343 ] oeuser 6,923 Aug 22 11:34 on hpl

It's not too late; you type
cancel hpl-1434

and see the message

cancel : request hpl-1434 non-existent

Your palms start to sweat. You look back at the list of waiting print jobs, and realize that you
typed the wrong request id number. Y ou try again:

cancel hpl-1343

and press Enter. This time you type it very carefully. No error message appears. To make sure
that it worked, you type

| pst at

again, and thistime you seethis:
$ hpl-1325 jincasey 1,381 Aug 22 11:33 on hpl

It looks like you were just in time. MariaLopez's job finished printing, and Jim'sis about to start.
The important thing is, yours will not print. Now you try printing pr onol. t xt again, typing

The Operating Systems Handbook 48 copyright 2001 Bob DuCharme



Chapter 6 Using aUNIX System

more carefully this time:

I p pronol.txt

Next, you check the print queue with thel pst at command. Thistime, you see

$ hpl-1325 jincasey 1, 381 Aug 22 11:33 on hpl
$ hpl-1348 | oeuser 2,348 Aug 22 11:36 on hpl

so you know that you'll have it soon.

While you wait for it, you copy the file Mary told you about into your own directory. She said
that it was in her home directory, not her mail directory, so you copy seppr ono. t xt into your
home directory with the following command:

cp /usr2/ maryjones/ sepprono.txt /usr2/joeuser

After printing it, you check to make sure that it's there. You could type |l s and list every filein
the current directory, but you only want to check this single file. On the other hand, you're too
lazy totypeout| s seppr ono. t xt , so you take advantage of UNIX's wildcards and type:

Is -1 sep*
You include the - | because you're curious about the file's size. The system responds with the
following:

STWTWT-- 1 maryjones marketing 19853 Sep 18 1994 sepprono. txt

Almost 20 kilobytes, which is about 10 pages. Y ou hope it's useful.

After you pick up your pronol. t xt printout from the printer, you look it over and it's not too
bad. If you trim it down and add some stuff from seppr ono. t xt , it should keep Mary happy.
To be safe, you want to keep the original file, so you make a copy of it and work on the copy.
This copy will end up as a summary of your work on the September promotion, so you enter the
following copy command:

cp pronol.txt sepprono.txt

After you press the Enter key, you redlize: Mary's file was called seppr ono. t xt , and you just
copied over it. Dumb, but not a disaster—you can copy her original file into your directory
again. Thistime, when you copy it, you give the copy a new name:

cp /usr2/ maryjones/ sepprono.txt /usr2/joeuser/njprono.txt

Then you print it out with the command

I'p nj prono. txt

Y ou read through your printouts of pr onol. t xt and nj prono. t xt and mark them up with
ideas for your own seppr onp. t xt file. After bringing up seppr ono. t xt into thevi text
editor, you delete a bit, turn some phrases into complete sentences, and add some quotes from

The Operating Systems Handbook 49 copyright 2001 Bob DuCharme



Chapter 6 Using aUNIX System

nj prono. t xt.Youaso usethevi : wcommand to save your work every few minutes while
you're editing. When you're done, you use the : wq to save your final changes and quit out of vi .

After printing out your edited file with the Ip command and proofreading it, it looks good enough
to send to Mary. You mail it to her with the following command:

cat sepprono.txt | mail njones

Y ou receive this message:

nj ones. .. User unknown

Because you entered Mary's login name incorrectly, the system didn't recognize it. You try
again:

cat sepprono.txt | mail nmaryjones
This time there's no error message, so you know it worked.

That's enough work for the morning, and lunch calls. Because you don't want to leave your desk
with your terminal logged in, you type

exit

to log out.

The Operating Systems Handbook 50 copyright 2001 Bob DuCharme



